Gender Roles in Climate Change Adaptation of Crop Production in Kwale County
Kenya

Mulinya C.¹
1. Masinde Muliro University of Science and Technology

ABSTRACT

Kwale County like most of coastal Kenya, is endowed with monsoon climate, thus supports a rich diversity of flora and fauna. However, the area is susceptible to climate change impacts due to the changing weather patterns in the region. Temperatures have over time been increasing and rainfall decreasing as its patterns becomes more unpredictable. This has had major negative impacts conspicuously affecting the local population, which highly depends on natural resources for livelihood. The widespread poverty, recurrent droughts, floods, inequitable land distribution, overdependence on rain-fed agriculture, and inadequate coping mechanisms all combine to increase people’s vulnerability to climate change. This phenomenon has subsequently affected the small scale farmers in the area, crop production yields have decreased over the years exposing the area to risks of food insecurity. Importantly, the extents to which these impacts are felt depend on adaptation and coping mechanisms of individual vulnerable groups. Women are perceived to be more vulnerable than men yet they have enough indigenous expertise that can help in coping to these climatic changes. On the contrary, the vulnerability and role of women in crop production and climate change has been overemphasized leaving out men as if they are have no role to play. It is on this scenario that this research sought to investigate the gender roles in crop production and in adaptation to climate change in Kwale county, Kenya. The study is anchored on three specific objectives namely: To determine temperature and rainfall trends over the past 30 years in Kwale County; to access differential gender roles in crop production in Kwale county; and lastly; to compare gender roles in the adaptation of crop production to climate change in Kwale county. A descriptive survey was adopted benefiting from both qualitative and quantitative approaches to data. The unit of analysis constituted a total of 379 households adopted from Krejice and Morgan table of sample size and sampled through purposive sampling technique. Key informant interviews and focus group discussions were used to augment data from household surveys. Statistical analysis of climate data shows that temperature has gradually increased over the years at a cumulative rate of 0.02°C. Rainfall trends posted a negative trend line with a regression coefficient of -2.801. The coefficient of determinant (R²) of annual rainfall was 1.60 % which means there was a 2% variation in rainfall amounts over the years under study. Rainfall was characterized as being bimodal with large inter-annual variability. The study revealed societal gender discrepancies in view of vulnerability to climate change, with women being highlighted as more susceptible to vagaries of changing weather conditions leaving out men as perpetrators of climate change. Access to productive farm inputs such land and extension services, is generally hampered, hence women’s workload is increased which undermines their overall role in crop productivity and adaption to climate change. It is apparent that men are more likely to have access to these resources, the skills and power to use them and therefore may better equipped to adapt compared to women. Yet, their role in climate change adaption in crop production is minimal due to their engagement in other activities away from the farms. The study recommends government and stakeholder intervention through conservation and climate smart agriculture in the region and promotion of stress resilient crop varieties in the wake of climate change and variability. Forums deliberating climate change adaption issues should be enhanced with strict adherence to equal participation by both men and women as a best practice.